Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Funct Plant Biol ; 512024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38388445

RESUMO

Microalgae are photosynthetic organisms and a potential source of sustainable metabolite production. However, different stress conditions might affect the production of various metabolites. In this study, a meta-analysis of RNA-seq experiments in Dunaliella tertiolecta was evaluated to compare metabolite biosynthesis pathways in response to abiotic stress conditions such as high light, nitrogen deficiency and high salinity. Results showed downregulation of light reaction, photorespiration, tetrapyrrole and lipid-related pathways occurred under salt stress. Nitrogen deficiency mostly induced the microalgal responses of light reaction and photorespiration metabolism. Phosphoenol pyruvate carboxylase, phosphoglucose isomerase, bisphosphoglycerate mutase and glucose-6-phosphate-1-dehydrogenase (involved in central carbon metabolism) were commonly upregulated under salt, light and nitrogen stresses. Interestingly, the results indicated that the meta-genes (modules of genes strongly correlated) were located in a hub of stress-specific protein-protein interaction (PPI) network. Module enrichment of meta-genes PPI networks highlighted the cross-talk between photosynthesis, fatty acids, starch and sucrose metabolism under multiple stress conditions. Moreover, it was observed that the coordinated expression of the tetrapyrrole intermediated with meta-genes was involved in starch biosynthesis. Our results also showed that the pathways of vitamin B6 metabolism, methane metabolism, ribosome biogenesis and folate biosynthesis responded specifically to different stress factors. Since the results of this study revealed the main pathways underlying the abiotic stress, they might be applied in optimised metabolite production by the microalga Dunaliella in future studies. PRISMA check list was also included in the study.


Assuntos
Clorofíceas , Clorofíceas/genética , Clorofíceas/metabolismo , Estresse Fisiológico/genética , Amido/metabolismo , RNA-Seq , Nitrogênio/metabolismo , Tetrapirróis
2.
J Hazard Mater ; 469: 133898, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38422737

RESUMO

The growing prevalence of lithium (Li) batteries has drawn public attention to Li as an emerging pollutant. The present study investigates the toxicity of Li+ on Chromochloris zofingiensis, examining physiological, biochemical and omics aspects. Results reveal hormesis effects of Li+ on C. zofingiensis growth. At Li+ concentrations below 5 mg L-1, Li+ can enhance chlorophyll content, mitochondrial activity, and antioxidant capacity, leading to increased dry cell weight and cell number. Conversely, when it exceeded 10 mg L-1, Li+ can reduce chlorophyll content, induce oxidative stress, and disrupt chloroplast and mitochondria structure and function, ultimately impeding cell growth. In addition, under 50 mg L-1 Li+ stress, microalgae optimize absorbed light energy use (increasing Fv/Fm and E TR ) and respond to stress by up-regulating genes in starch and lipid biosynthesis pathways, promoting the accumulation of storage components. Weighted gene co-expression network analysis indicates that peptidylprolyl cis/trans isomerase, GTPase and L-ascorbate oxidase might be the key regulators in response to Li+ stress. This research marks the toxic effects and molecular mechanisms of Li+ on freshwater microalga, which would improve our understanding of Li's toxicology and contributing to the establishment of Li pollution standards.


Assuntos
Clorofíceas , Microalgas , Antioxidantes/metabolismo , Microalgas/metabolismo , Lítio/toxicidade , Fotossíntese , Clorofila/metabolismo , Clorofíceas/metabolismo
3.
Bioresour Technol ; 394: 130305, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199438

RESUMO

Haematococcus lacustris is a precious algal species renowned for its ability to simultaneous production of astaxanthin and lipid. However, its slow growth rate necessitates the development of appropriate mutagenesis methodologies to effectively enhance its synchronous production of both astaxanthin and lipid. This study introduced the co-mutation of Atmospheric and Room Temperature Plasma (ARTP) and ethanol. The performance and preliminary mechanisms underlying the combined accumulation of astaxanthin and lipid in H. lacustris under both mutations by ARTP and ethanol were comparatively analyzed. Combined astaxanthin and lipid contents relative to total cell mass in the 110-2 strain reached 54.4%, surpassing that of strain 0-3 and the control by 17.0% and 47.6% respectively. Transcriptome level analysis revealed how both ethanol and ARTP induction promote the expressions of carotenoid and lipid synthesis genes and related enzymatic activities. Upregulation of genes associated with cell activity contributed to lipid and astaxanthin metabolism in multi pathways.


Assuntos
Clorofíceas , Etanol , Temperatura , Etanol/metabolismo , Clorofíceas/metabolismo , Mutação/genética , Lipídeos , Xantofilas
4.
Chemosphere ; 352: 141320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38296208

RESUMO

In the environment, algae are exposed to several stressors such as limitation of essential nutrients and excess of toxic substances. It is well known the importance of phosphorus (P) supply for healthy metabolism of algae and impacts at this level can affect the whole aquatic trophic chain. Aluminum (Al) is the most abundant metal on Earth and it is toxic to different trophic levels. Processes related to P and Al assimilation still need to be clarified and little is known about the responses of microalgae exposed to the two stressors simultaneously. We evaluated the effects of environmental concentrations of Al and P limitation, isolated and in combination, on growth, pigment production and photosynthesis of the freshwater microalga Raphidocelis subcapitata. Both stressors affected cell density, chlorophyll a, carotenoids, and maximum quantum yield. Al did not affect any other evaluated parameter, while P limitation affected parameters related to the dissipation of heat by algae and the maximum electron transport rate, decreasing the saturation irradiance. In the combination of both stressors, all parameters evaluated were affected in a synergistic way, i.e., the results were more harmful than expected considering the responses to isolated stressors. Our results indicate that photoprotection mechanisms of algae were efficient in the presence of both stressors, avoiding damages to the photosynthetic apparatus. In addition, our data highlight the higher susceptibility of R. subcapitata to Al in P-limited conditions.


Assuntos
Clorofíceas , Microalgas , Poluentes Químicos da Água , Clorofíceas/metabolismo , Microalgas/metabolismo , Alumínio/metabolismo , Clorofila A/metabolismo , Água Doce , Poluentes Químicos da Água/análise
5.
Bioresour Technol ; 393: 130001, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37956949

RESUMO

The economical way of Haematococcus pluvialis farming is to simultaneously achieve biomass, astaxanthin and lipid using less expensive chemicals. This paper explores the role of exogenous arginine in promoting growth and astaxanthin accumulation under stressful conditions. The application of arginine exerts a synergic effect on biomass, astaxanthin and lipid by improving carbon utilization, activating the arginine pathway and regulating carotenoid and lipid-related genes. Genes related to arginine catabolism, such as ADC, OCT, ASS1, NOS, and OAT, were up-regulated at both the cultivation and astaxanthin induction stages, signifying their importance in both growth and astaxanthin synthesis. Furthermore, transcriptome analysis revealed that arginine up-regulated transcription levels of genes involved carbon fixing, lipid biosynthesis, pyruvate metabolism, carotenoid, tricarboxylic acid cycle, and arginine and proline metabolism. The results provide a significant mechanism and applicability of using exogenous arginine and high light to stimulate bioproducts from Haematococcus pluvialis.


Assuntos
Clorofíceas , Biomassa , Clorofíceas/metabolismo , Xantofilas/metabolismo , Lipídeos , Carbono
6.
Mol Biotechnol ; 66(3): 402-423, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37270443

RESUMO

The demand for astaxanthin has been increasing for many health applications ranging from pharmaceuticals, food, cosmetics, and aquaculture due to its bioactive properties. Haematococcus pluvialis is widely recognized as the microalgae species with the highest natural accumulation of astaxanthin, which has made it a valuable source for industrial production. Astaxanthin produced by other sources such as chemical synthesis or fermentation are often produced in the cis configuration, which has been shown to have lower bioactivity. Additionally, some sources of astaxanthin, such as shrimp, may denature or degrade when exposed to high temperatures, which can result in a loss of bioactivity. Producing natural astaxanthin through the cultivation of H. pluvialis is presently a demanding and time-consuming task, which incurs high expenses and restricts the cost-effective industrial production of this valuable substance. The production of astaxanthin occurs through two distinct pathways, namely the cytosolic mevalonate pathway and the chloroplast methylerythritol phosphate (MEP) pathway. The latest advancements in enhancing product quality and extracting techniques at a reasonable cost are emphasized in this review. The comparative of specific extraction processes of H. pluvialis biological astaxanthin production that may be applied to large-scale industries were assessed. The article covers a contemporary approach to optimizing microalgae culture for increased astaxanthin content, as well as obtaining preliminary data on the sustainability of astaxanthin production and astaxanthin marketing information.


Assuntos
Clorofíceas , Microalgas , Xantofilas/metabolismo , Clorofíceas/química , Clorofíceas/metabolismo , Microalgas/metabolismo
7.
Environ Pollut ; 341: 122998, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995955

RESUMO

Phosphorus (P; macronutrient) and cobalt (Co; micronutrient) are essential for algal healthy metabolism. While P provides energy, Co is a co-factor of several enzymes and component of B12 vitamin. However, in concentrations higher or lower than required, P and Co alter algal metabolism, impacting physiological processes (e.g., growth and photosynthesis), usually in a harmful way. In the environment, algae are exposed to multiple stressors simultaneously and studies evaluating the algal response to the combination of macronutrient limitation and micronutrient excess are still scarce. We assessed the effects of P limitation and Co excess, isolated and combined, in Raphidocelis subcapitata (Chlorophyceae), in terms of growth, pigments production, and photosynthetic parameters. Except for the photochemical quenching (qP) and the efficiency in light capture (α) under P limitation, all parameters were affected by both stressors, isolated and combined. Under P limitation, chlorophyll a was the most sensitive parameter; while excess of Co affected most the photoprotective mechanisms of algae, altering the non-photochemical quenchings qN and NPQ, influencing the light use and dissipation of heat by algae. The combination of two stressors resulted in a significant decrease in algal growth, with synergistic responses in growth and pigments production, and antagonism in the photosynthetic parameters. We suggest that algal metabolism was altered during P limitation acclimation and the excess of Co was used in a beneficial way by P-limited algae in photosynthesis, resulting in the well-functioning of the photosynthetic apparatus in the combination of both stressors. However, more studies are needed to understand which mechanisms are involved in this adaptation which resulted in antagonism in photosynthetic processes and synergism in growth and pigments production.


Assuntos
Clorofíceas , Microalgas , Clorofíceas/metabolismo , Clorofila A/metabolismo , Cobalto/toxicidade , Fotossíntese , Água Doce , Micronutrientes , Aclimatação , Clorofila/metabolismo
8.
Environ Sci Pollut Res Int ; 31(4): 6054-6066, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147239

RESUMO

Microalgae can use carbon sources in sludge extract prepared from sludge. Moreover, the high concentration of CO2 and the large number of carbon sources in the liquid phase will promote microalgae growth and metabolism. In this experiment, Tetradesmus obliquus was cultivated with sludge extract at 30% CO2. Algae liquid (the name used to describe the fertilizer made in this research) was further prepared as lettuce fertilizer. The effect of different times of microalgae culture (10, 15, 20, 25, and 30 days) on the fertilizer efficiency of the algae liquid was evaluated by lettuce hydroponic experiments. The findings indicate that lettuce cultivated in algae liquid collected on the 15th and 30th days exhibited superior performance in terms of growth, antioxidant capacity, and nutritional quality. We analyzed the experimental results in the context of microalgae metabolic mechanisms, aiming to contribute experience and data essential for the development of industrial microalgae fertilizer production.


Assuntos
Clorofíceas , Microalgas , Fertilizantes , Esgotos , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofíceas/metabolismo , Extratos Vegetais/metabolismo , Microalgas/metabolismo , Biomassa
9.
Sci Total Environ ; 912: 169507, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38142000

RESUMO

The utilization of microalgae for both removing phthalate esters (PAEs) from wastewater and producing bioenergy has become a popular research topic. However, there is a lack of studies comparing the effectiveness of different types of microalgae in removing these harmful compounds. Therefore, the present study aimed to evaluate and compare the efficiency of various processes, such as hydrolysis, photolysis, adsorption, and biodegradation, in removing diisobutyl phthalate (DiBP) using six different species of microalgae. The study indicated that the average removal efficiency of DiBP (initial concentrations of 5, 0.5, and 0.05 mg L-1) by all six microalgae (initial cell density of 1 × 106 cells mL-1) was in the order of Scenedesmus obliquus (95.39 %) > Chlorella vulgaris (94.78 %) > Chroococcus sp. (91.16 %) > Cyclotella sp. (89.32 %) > Nitzschia sp. (88.38 %) > Nostoc sp. (84.33 %). The results of both hydrolysis and photolysis experiments revealed that the removal of DiBP had minimal impact, with respective removal efficiencies of only 0.89 % and 1.82 %. The adsorption efficiency of all six microalgae decreased significantly with increasing initial DiBP concentrations, while the biodegradation efficiency was elevated. Chlorella vulgaris and Chroococcus sp. demonstrated the highest adsorption and biodegradation efficiencies among the microalgae tested. Scenedesmus obliquus was chosen for the analysis of the degradation products of DiBP due to its exceptional ability to remove DiBP. The analysis yielded valuable results, identifying monoisobutyl phthalate (MiBP), phthalic acid (PA), and salicylic acid (SA) as the possible degradation products of DiBP. The possible degradation pathways mainly included dealkylation, the addition of hydroxyl groups, and decarboxylation. This study lays a theoretical foundation for the elimination of PAEs in the aquatic environment.


Assuntos
Chlorella vulgaris , Clorofíceas , Diatomáceas , Microalgas , Ácidos Ftálicos , Diatomáceas/metabolismo , Chlorella vulgaris/metabolismo , Dibutilftalato/metabolismo , Ácidos Ftálicos/análise , Clorofíceas/metabolismo , Microalgas/metabolismo
10.
PLoS One ; 18(12): e0295973, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38100462

RESUMO

Carotenoids are antioxidants, which reduce various chronic diseases of human, and have many industrial applications. The halophilic Dunaliella parva (D. parva) is rich in carotenoids. The compounds CaCl2 and PEG are the popular metabolic enhancers. To further enhance carotenogenesis, D. parva was treated with two compounds polyethylene glycol (PEG) and CaCl2. Application of CaCl2 and PEG enhanced the carotenoids contents and the antioxidant activities of carotenoids compared to control group (no treatment of CaCl2 or PEG). The highest carotenoids contents were obtained by treating D. parva with 40 ppm CaCl2 (3.11 mg/g dry weight, DW) and 80 ppm PEG (2.78 mg/g DW) compared with control group (1.96 mg/g DW). When D. parva was treated with 40 ppm CaCl2 and 80 ppm PEG, protein contents reached the highest values (90.28 mg/g DW and 89.57 mg/g DW) compared to that of control group (73.42 mg/g DW). The antioxidant activities of carotenoids samples were determined. Generally, the antioxidant activities of carotenoids from D. parva treated with PEG and CaCl2 were superior to that of control group. The antioxidant activities of carotenoids mainly contained reducing power, hydroxyl radical scavenging activity and superoxide radical scavenging activity. The reducing powers of carotenoids extracts from 20 ppm CaCl2 group (2.07%/mg carotenoids) and 120 ppm PEG group (1.59%/mg carotenoids) were significantly higher than that of control group (<1.25%/mg carotenoids). The superoxide radical scavenging activities of carotenoids extracts from 40 ppm CaCl2 group (70.33%/mg carotenoids) and 80 ppm PEG group (65.94%/mg carotenoids) were significantly higher than that of control group (<55%/mg carotenoids). This paper laid a foundation for massive accumulation of carotenoids in microalga D. parva.


Assuntos
Clorofíceas , Microalgas , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Microalgas/metabolismo , Cloreto de Cálcio , Polietilenoglicóis , Superóxidos , Carotenoides/metabolismo , Clorofíceas/metabolismo
11.
Int J Mol Sci ; 24(20)2023 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-37895054

RESUMO

Algae-driven processes, such as direct CO2 fixation into glycerol, provide new routes for sustainable chemical production in synergy with greenhouse gas mitigation. The marine microalgae Dunaliella tertiolecta is reported to accumulate high amounts of intracellular glycerol upon exposure to high salt concentrations. We have conducted a comprehensive, time-resolved systems biology study to decipher the metabolic response of D. tertiolecta up to 24 h under continuous light conditions. Initially, due to a lack of reference sequences required for MS/MS-based protein identification, a high-quality draft genome of D. tertiolecta was generated. Subsequently, a database was designed by combining the genome with transcriptome data obtained before and after salt stress. This database allowed for detection of differentially expressed proteins and identification of phosphorylated proteins, which are involved in the short- and long-term adaptation to salt stress, respectively. Specifically, in the rapid salt adaptation response, proteins linked to the Ca2+ signaling pathway and ion channel proteins were significantly increased. While phosphorylation is key in maintaining ion homeostasis during the rapid adaptation to salt stress, phosphofructokinase is required for long-term adaption. Lacking ß-carotene, synthesis under salt stress conditions might be substituted by the redox-sensitive protein CP12. Furthermore, salt stress induces upregulation of Calvin-Benson cycle-related proteins.


Assuntos
Clorofíceas , Glicerol , Glicerol/metabolismo , Espectrometria de Massas em Tandem , Clorofíceas/metabolismo , Fotossíntese , Estresse Salino
12.
Bioresour Technol ; 389: 129802, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783237

RESUMO

This study explored the use of taurine in enhancing the production and bio-accessibility of astaxanthin in Haematococcus pluvialis, which typically forms a secondary cell wall hindering astaxanthin extraction. The biomass of taurine-treated group significantly increased by 18%, and astaxanthin yield surged by 34% in comparison to the control group. Without cell disruption, astaxanthin recovery from thin-walled cells in the taurine-treated group, using dimethyl sulfoxide and ethanol as extraction reagents, was 97% and 75%, respectively, which were 30-fold higher than those of thick-walled cells in the control group. Additionally, the cell fragmentation rate increased by 86% in taurine-treated group relative to the control group. Comparative transcriptome analysis identified taurine-induced upregulation of genes involved in the astaxanthin biosynthesis pathway and downregulation of those associated with secondary cell wall synthesis. This study thus offers an innovative taurine-based strategy to enhance astaxanthin production and bio-accessibility while shedding light on the mechanisms driving this process.


Assuntos
Clorofíceas , Clorofíceas/metabolismo , Xantofilas/metabolismo , Biomassa , Perfilação da Expressão Gênica
13.
Bioresour Technol ; 390: 129827, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37802367

RESUMO

Low productivity and high cost remain major bottlenecks for the large-scale production of Haematococcus sp. This study explored biomass production and carotenoid accumulation in Haematococcus sp. (KCTC 12348BP) using drying film culture. The broth-cultured strain (3.2 × 106 cells/mL, 0.83 ± 0.02 mg/mL for a 21 d culture) was cultured under various conditions (different inoculum volumes and mist feeding intervals) in waterless agar plates at 28 ± 0.5 °C, under fluorescent light (12 h light-dark cycle) for 1 month. The maximum biomass obtained was 17.60 ± 0.72 g/m2, while the maximum astaxanthin concentration was 8.23 ± 1.13 mg/g in the culture using 1 mL inoculum and 3 d feeding interval. Drought stress in drying film culture effectively induced the accumulation of carotenoids from ß-carotene, facilitating the production of canthaxanthin via the astaxanthin biosynthesis pathway. This cost-effective culture system can increase the biomass and carotenoid pigment production in Haematococcus sp.


Assuntos
Clorofíceas , Clorófitas , Clorófitas/metabolismo , Carotenoides/metabolismo , Clorofíceas/metabolismo , Xantofilas/metabolismo , Biomassa
14.
Molecules ; 28(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37375329

RESUMO

Prothioconazole (PTC) is a broad-spectrum triazole fungicide with one asymmetric center and consists of two enantiomers, R-(-)-PTC and S-(+)-PTC. To address the concern of its environmental safety, the enantioselective toxic effects of PTC on Scendesmus obliquus (S. obliquus) were investigated. PTC racemates (Rac-PTC) and enantiomers exhibited dose-dependent acute toxicity effects against S. obliquus at a concentration from 1 to 10 mg·L-1. The 72 h-EC50 value of Rac-, R-(-)-, and S-(+)-PTC is 8.15, 16.53, and 7.85 mg·L-1, respectively. The growth ratios and photosynthetic pigment contents of the R-(-)-PTC treatment groups were higher than the Rac- and S-(+)-PTC treatment groups. Both catalase (CAT) activities and esterase activities were inhibited in the Rac- and S-(+)-PTC treatment groups at high concentrations of 5 and 10 mg·L-1, and the levels of malondialdehyde (MDA) were elevated, which exceeded the levels in algal cells for the R-(-)-PTC treatment groups. PTC could disrupt the cell morphology of S. obliquus and induce cell membrane damage, following the order of S-(+)-PTC ≈ Rac-PTC > R-(-)-PTC. The enantioselective toxic effects of PTC on S. obliquus provide essential information for its ecological risk assessment.


Assuntos
Clorofíceas , Scenedesmus , Scenedesmus/metabolismo , Estereoisomerismo , Antioxidantes/farmacologia , Triazóis/toxicidade , Triazóis/metabolismo , Clorofíceas/metabolismo
15.
Chemosphere ; 336: 139284, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37348613

RESUMO

Selenastrum capricornutum efficiently degrades benzo(a)pyrene (BaP) but few proteins related to BaP degradation have been identified in this microalgae. So far, it has only been suggested that it could degrade BaP via the monooxygenase and/or dioxygenase pathways. To know more about this fact, in this work, cultures of S. capricornutum incubated with BaP were used to obtain the molecular weights (MWs) of proteins existing in its extra- and cellular extracts by electrophoresis and UPLC-ESI(+)-TOF MS analysis. The results of this proteomic approach indicated that BaP markedly induces the MWs: 6-20, 30, 45, and 65 kDa in cells; 6-20, 30.3, 38-45, and 55 kDa in liquid medium. So, these proteins could be related to BaP biodegradation. An identified protein with monooxygenase activity and rubredoxins (Rds) show to be related to BaP degradation: Rds could participate, together with the monooxygenase in the electron transfer during the formation of monohydroxylated-BaP metabolites. Rds may be also associated with a dioxygenase system that degrades BaP to form dihydrodiol-BaP metabolites. A multi-pass membrane protein was identified too, and it can regulate the transport of molecules like enzymes from inside the cell to the outside environment. At the same time, the presence of a dihydrolipoamide acetyltransferase validated the stress caused by the exposure to BaP. It is noteworthy that these findings provide valuable and original information on the characterization of the proteins of S. capricornutum cultures degrading BaP, whose enzymes have so far not been known. It is important to highlight that the functions of the identified proteins can help in understanding the metabolic and environmental behavior of this microalgae, and the extracts containing the degrading enzymes could be utilized in bioremediation applications.


Assuntos
Clorofíceas , Clorófitas , Dioxigenases , Clorófitas/metabolismo , Benzo(a)pireno/metabolismo , Proteômica , Clorofíceas/metabolismo , Oxigenases de Função Mista/metabolismo , Dioxigenases/metabolismo , Espectrometria de Massas
16.
Bioresour Technol ; 374: 128811, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36863528

RESUMO

The utilization of gibberellic acid-3, high carbon/nitrogen ratio and salinity concentration can effectively enhance astaxanthin biosynthesis in Chromochloris zofingiensis under the heterotrophic conditions, but the underlying mechanisms remained yet to be investigated. The metabolomics analysis revealed that enhancement of the glycolysis, pentose phosphate pathways (PPP), and tricarboxylic acid (TCA) cycle led to astaxanthin accumulation under the induction conditions. The increased fatty acids can significantly increase astaxanthin esterification. The addition of appropriate concentrations of glycine (Gly) and γ-aminobutyric acid (GABA) promoted astaxanthin biosynthesis in C. zofingiensis, as well as benefiting for biomass yield. With the addition of 0.5 mM GABA, the astaxanthin yield increased to 0.35 g·L-1, which was 1.97-fold higher than that of the control. This study advanced understanding about astaxanthin biosynthesis in heterotrophic microalga, and provided novel strategies for enhanced astaxanthin production in C. zofingiensis.


Assuntos
Clorofíceas , Microalgas , Microalgas/metabolismo , Xantofilas/metabolismo , Clorofíceas/metabolismo , Metabolômica
17.
Bioresour Technol ; 373: 128741, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36791976

RESUMO

The present work evaluated the ultrasound (US) effects on the growth of Pseudoneochloris marina and Chlorella zofingiensis. For P. marina, US treatment did not increase cell proliferation and reduced cell density when used for 60 min (exponential phase, for 5 days), indicating a possible occurrence of cell damage. For C. zofingiensis, the application of discontinuous US for 10 min resulted in an increase of 65 % in biomass concentration compared to the control. These distinct behaviors indicate that microalgae species react differently to physical stimuli. After US treatment, a reduction of carotenoid, chlorophyll, lipid and protein concentrations was observed, which may be related to changes in the metabolic pathways to produce these compounds. Overall, the results of the present study show the potential of discontinuous US to enhance microalgae cell proliferation.


Assuntos
Chlorella , Clorofíceas , Microalgas , Chlorella/metabolismo , Nitrogênio/metabolismo , Carotenoides/metabolismo , Clorofíceas/metabolismo , Microalgas/metabolismo , Biomassa
18.
Photosynth Res ; 155(1): 49-58, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36266605

RESUMO

Microalgae require copper (Cu) in trace levels for their growth and metabolism, it is a vital component of certain metalloproteins. Although this element has been widely studied concerning microalgae physiology, the effects of environmentally relevant levels have been less studied. We studied the photosynthesis and growth of the Chlorophyte Monoraphidium sp. exposed to Cu ranging from low (1.7 nM) to high (589.0 nM) free Cu ions (Cu2+) concentrations. The growth rate was unaffected by Cu concentrations in the range of 1.7-7.4 nM Cu2+, but decreased beyond it. The relative maximum electron transport rate (rETRm), saturation irradiance (Ek), photochemical quenching (qP and qL), and PSII operating efficiency [Formula: see text] were stimulated in the 3.4-7.4 nM Cu2+ range, concentrations slightly higher than the control, whereas non-photochemical quenching (NPQ) gradually increased with increasing Cu2+. The photosystem II antenna size [Sigma (II)440] increased under high Cu (589.0 nM), which resulted in a decrease in the quinone A (QA) reduction time (tau). In contrast, the QA re-oxidation time was unaffected by Cu exposure. These findings show that a slight increase in Cu stimulated photosynthesis in Monoraphidium sp., whereas high Cu reduced photosynthesis and increased the dissipation of captured light energy. This research is a contribution to the understanding of the dynamic photo-physiological responses of Monoraphidium sp. to Cu ions.


Assuntos
Clorofíceas , Microalgas , Cobre/farmacologia , Fotossíntese/fisiologia , Transporte de Elétrons , Complexo de Proteína do Fotossistema II/metabolismo , Microalgas/metabolismo , Clorofíceas/metabolismo , Clorofila/metabolismo
19.
Bioresour Technol ; 369: 128488, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36528181

RESUMO

This paper aims to explore the role of proline (Pro) in the production of biomass and astaxanthin (AST) in stress-induced Haematococcus pluvialis. The astaxanthin content and productivity were 24.02 mg g-1 and 2.22 mg/L d-1 under abiotic stresses, respectively. After 100 µM Pro supplementation, the biomass, AST and lipid contents reached 1.43 g/L, 29.91 mg g-1 and 56.79 %, which were enhanced by 19.16 %, 33.52 % and 11.08 %, respectively, compared to the control. Pro-treated regulated chlorophyll, carbohydrate and protein accumulation and upregulated carotenogenic, lipogenic and antioxidant enzymes-associated gene levels; as well as increased endogenous Pro content, but reduced ROS (Reactive oxygen species) and MDA (Malondialdehyde) levels and alleviated oxidative stress, which might be involved in AST biosynthesis. Further data showed Pro has a positive role in biomass and AST coaccumulation in different H. pluvialis species, suggesting application of Pro was an effective strategy to improve AST productivity of H. pluvialis.


Assuntos
Clorofíceas , Clorófitas , Clorófitas/metabolismo , Clorofíceas/metabolismo , Xantofilas/metabolismo , Clorofila/metabolismo
20.
Mol Cell Biochem ; 478(9): 1915-1925, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36583795

RESUMO

Oxidative stress has recently been identified as an important mediator of cardiovascular diseases. The need to find efficient antioxidant molecules is essential in the disease's prevention. Therefore, the present study aimed to evaluate the potential of microalgae bioactive in protecting H9c2 cardiomyoblasts from H2O2-induced oxidative stress. Four microalgal species were investigated for their antioxidant capacity. A qualitative assessment of oxidative stress in H9c2 cardiomyoblasts stained with DCFH-DA, treated with the highly active microalgae extracts, was performed. The protein expression of total caspase-3 was also examined to investigate whether the extract protects H9c2 cardimyoblasts from H2O2-induced apoptosis. High antioxidant activity was observed for the hexanoic extracts after 10 days of cultivation. Asterarcys quadricellulare exhibited the highest antioxidant capacity of 110.59 ± 1.75 mg TE g-1 dry weight and was tested against H9c2 cardiomyoblasts, which were initially subjected to H2O2-induced oxidative stress. This hexanoic extract protected against H2O2 induced oxidative stress with a similar scavenging capacity as N-Acetylcysteine. Furthermore, total caspase-3 was increased following treatment with the hexanoic extract, suggesting that A. quadricellulare also had anti-apoptotic properties. The outcome of our study highlighted the possible use of the local A. quadricellulare strain QUCCCM10 as a natural, safe, and efficient antioxidant to prevent cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Clorofíceas , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Clorofíceas/metabolismo , Caspase 3/metabolismo , Peróxido de Hidrogênio/farmacologia , Doenças Cardiovasculares/metabolismo , Estresse Oxidativo , Apoptose , Espécies Reativas de Oxigênio/metabolismo , Miócitos Cardíacos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...